
xml.dom.minidom — Minimal DOM
implementation

Source code: Lib/xml/dom/minidom.py

xml.dom.minidom is a minimal implementation of the Document Object Model inter-

face, with an API similar to that in other languages. It is intended to be simpler than the

full DOM and also significantly smaller. Users who are not already proficient with the

DOM should consider using the xml.etree.ElementTree module for their XML pro-

cessing instead.

Warning: The xml.dom.minidom module is not secure against maliciously con-

structed data. If you need to parse untrusted or unauthenticated data see XML vul-

nerabilities.

DOM applications typically start by parsing some XML into a DOM. With

xml.dom.minidom, this is done through the parse functions:

The parse() function can take either a filename or an open file object.

xml.dom.minidom.parse(filename_or_file, parser=None, bufsize=None)

Return a Document from the given input. filename_or_file may be either a file

name, or a file-like object. parser, if given, must be a SAX2 parser object. This

function will change the document handler of the parser and activate namespace

support; other parser configuration (like setting an entity resolver) must have been

done in advance.

If you have XML in a string, you can use the parseString() function instead:

from xml.dom.minidom import parse, parseString

dom1 = parse('c:\\temp\\mydata.xml') # parse an XML file by name

datasource = open('c:\\temp\\mydata.xml')
dom2 = parse(datasource) # parse an open file

dom3 = parseString('<myxml>Some data<empty/> some more data</myxml>'

Page 1 of 7xml.dom.minidom — Minimal DOM implementation — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.minidom.html

xml.dom.minidom.parseString(string, parser=None)

Return a Document that represents the string. This method creates an

io.StringIO object for the string and passes that on to parse().

Both functions return a Document object representing the content of the document.

What the parse() and parseString() functions do is connect an XML parser with a

“DOM builder” that can accept parse events from any SAX parser and convert them into

a DOM tree. The name of the functions are perhaps misleading, but are easy to grasp

when learning the interfaces. The parsing of the document will be completed before

these functions return; it’s simply that these functions do not provide a parser imple-

mentation themselves.

You can also create a Document by calling a method on a “DOM Implementation” ob-

ject. You can get this object either by calling the getDOMImplementation() function

in the xml.dom package or the xml.dom.minidom module. Once you have a

Document, you can add child nodes to it to populate the DOM:

Once you have a DOM document object, you can access the parts of your XML docu-

ment through its properties and methods. These properties are defined in the DOM

specification. The main property of the document object is the documentElement

property. It gives you the main element in the XML document: the one that holds all oth-

ers. Here is an example program:

When you are finished with a DOM tree, you may optionally call the unlink() method

to encourage early cleanup of the now-unneeded objects. unlink() is an

xml.dom.minidom-specific extension to the DOM API that renders the node and its

descendants are essentially useless. Otherwise, Python’s garbage collector will eventu-

ally take care of the objects in the tree.

from xml.dom.minidom import getDOMImplementation

impl = getDOMImplementation()

newdoc = impl.createDocument(None, "some_tag", None)
top_element = newdoc.documentElement
text = newdoc.createTextNode('Some textual content.')
top_element.appendChild(text)

dom3 = parseString("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

Page 2 of 7xml.dom.minidom — Minimal DOM implementation — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.minidom.html

See also:

Document Object Model (DOM) Level 1 Specification

The W3C recommendation for the DOM supported by xml.dom.minidom.

DOM Objects

The definition of the DOM API for Python is given as part of the xml.dom module docu-

mentation. This section lists the differences between the API and xml.dom.minidom.

Node.unlink()

Break internal references within the DOM so that it will be garbage collected on

versions of Python without cyclic GC. Even when cyclic GC is available, using this

can make large amounts of memory available sooner, so calling this on DOM ob-

jects as soon as they are no longer needed is good practice. This only needs to be

called on the Document object, but may be called on child nodes to discard chil-

dren of that node.

You can avoid calling this method explicitly by using the with statement. The fol-

lowing code will automatically unlink dom when the with block is exited:

Node.writexml(writer, indent="", addindent="", newl="")

Write XML to the writer object. The writer receives texts but not bytes as input, it

should have a write() method which matches that of the file object interface. The

indent parameter is the indentation of the current node. The addindent parameter is

the incremental indentation to use for subnodes of the current one. The newl pa-

rameter specifies the string to use to terminate newlines.

For the Document node, an additional keyword argument encoding can be used to

specify the encoding field of the XML header.

Changed in version 3.8: The writexml() method now preserves the attribute or-

der specified by the user.

Node.toxml(encoding=None)

Return a string or byte string containing the XML represented by the DOM node.

with xml.dom.minidom.parse(datasource) as dom:
... # Work with dom.

Page 3 of 7xml.dom.minidom — Minimal DOM implementation — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.minidom.html

With an explicit encoding [1] argument, the result is a byte string in the specified

encoding. With no encoding argument, the result is a Unicode string, and the XML

declaration in the resulting string does not specify an encoding. Encoding this string

in an encoding other than UTF-8 is likely incorrect, since UTF-8 is the default en-

coding of XML.

Changed in version 3.8: The toxml() method now preserves the attribute order

specified by the user.

Node.toprettyxml(indent="\t", newl="\n", encoding=None)

Return a pretty-printed version of the document. indent specifies the indentation

string and defaults to a tabulator; newl specifies the string emitted at the end of

each line and defaults to \n.

The encoding argument behaves like the corresponding argument of toxml().

Changed in version 3.8: The toprettyxml() method now preserves the attribute

order specified by the user.

DOM Example

This example program is a fairly realistic example of a simple program. In this particular

case, we do not take much advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\
<slideshow>
<title>Demo slideshow</title>
<slide><title>Slide title</title>
<point>This is a demo</point>
<point>Of a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>
<point>To have more than</point>
<point>one slide</point>
</slide>
</slideshow>
"""

dom = xml.dom.minidom.parseString(document)

Page 4 of 7xml.dom.minidom — Minimal DOM implementation — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.minidom.html

def getText(nodelist):
 rc = []

for node in nodelist:
if node.nodeType == node.TEXT_NODE:

 rc.append(node.data)
return ''.join(rc)

def handleSlideshow(slideshow):
print("<html>")

 handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])
 slides = slideshow.getElementsByTagName("slide")
 handleToc(slides)
 handleSlides(slides)

print("</html>")

def handleSlides(slides):
for slide in slides:

 handleSlide(slide)

def handleSlide(slide):
 handleSlideTitle(slide.getElementsByTagName("title")[0])
 handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):
print("<title>%s</title>" % getText(title.childNodes))

def handleSlideTitle(title):
print("<h2>%s</h2>" % getText(title.childNodes))

def handlePoints(points):
print("")
for point in points:

 handlePoint(point)
print("")

def handlePoint(point):
print("%s" % getText(point.childNodes))

def handleToc(slides):
for slide in slides:

 title = slide.getElementsByTagName("title")[0]
print("<p>%s</p>" % getText(title.childNodes))

handleSlideshow(dom)

Page 5 of 7xml.dom.minidom — Minimal DOM implementation — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.minidom.html

minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some

DOM 2 features (primarily namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules

apply:

• Interfaces are accessed through instance objects. Applications should not instan-

tiate the classes themselves; they should use the creator functions available on

the Document object. Derived interfaces support all operations (and attributes)

from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses only in parameters, the

arguments are passed in normal order (from left to right). There are no optional

arguments. void operations return None.

• IDL attributes map to instance attributes. For compatibility with the OMG IDL lan-

guage mapping for Python, an attribute foo can also be accessed through acces-

sor methods _get_foo() and _set_foo(). readonly attributes must not be

changed; this is not enforced at runtime.

• The types short int, unsigned int, unsigned long long, and boolean

all map to Python integer objects.

• The type DOMString maps to Python strings. xml.dom.minidom supports either

bytes or strings, but will normally produce strings. Values of type DOMString may

also be None where allowed to have the IDL null value by the DOM specifica-

tion from the W3C.

• const declarations map to variables in their respective scope (e.g.

xml.dom.minidom.Node.PROCESSING_INSTRUCTION_NODE); they must not be

changed.

• DOMException is currently not supported in xml.dom.minidom. Instead,

xml.dom.minidom uses standard Python exceptions such as TypeError and

AttributeError.

• NodeList objects are implemented using Python’s built-in list type. These ob-

jects provide the interface defined in the DOM specification, but with earlier ver-

sions of Python they do not support the official API. They are, however, much

more “Pythonic” than the interface defined in the W3C recommendations.

The following interfaces have no implementation in xml.dom.minidom:

• DOMTimeStamp

Page 6 of 7xml.dom.minidom — Minimal DOM implementation — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.minidom.html

[1]

• EntityReference

Most of these reflect information in the XML document that is not of general utility to

most DOM users.

Footnotes

The encoding name included in the XML output should conform to the appropriate

standards. For example, “UTF-8” is valid, but “UTF8” is not valid in an XML docu-

ment’s declaration, even though Python accepts it as an encoding name. See

https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and

https://www.iana.org/assignments/character-sets/character-sets.xhtml.

Page 7 of 7xml.dom.minidom — Minimal DOM implementation — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.minidom.html

